My journey, Part 2

See Part 1

A sense of history

I had never seen a machine before that I could change so easily (relative to other machines). I had this sense that these computers represented something big. I didn’t know what it was. It was just a general feeling I got from reading computer magazines. They reported on what was going on in the industry. All I knew was that I really liked dinking around with them, and I knew there were some others who did, too, but they were at most ten years older than me.

The culture of computing and programming was all over the place as well, though the computer was always portrayed as this “wonder machine” that had magical powers, and programming it was a mysterious dark art which made neat things happen after typing furiously tappy-tappy on the keyboard for ten seconds. Still, it was all encouragement to get involved.

I got a sense early on that it was something that divided the generations. Most adults I ran into knew hardly anything about them, much less how to program them, like I did. They had no interest in learning about them either. They felt they were too complicated, threatening, mysterious. They didn’t have much of an idea about its potential, just that “it’s the future”, and they encouraged me to learn more about them, because I was going to need that knowledge, though their idea of “learn more about them” meant “how to use one”, not program it. If I told them I knew how to program them they’d say, “Wow! You’re really on top of it then.” They were kind of amazed that a child could have such advanced knowledge that seemed so beyond their reach. They couldn’t imagine it.

A few adults, including my mom, asked me why I was so fascinated by computers. Why were they important? I would tell them about the creative process I went through. I’d get a vision in my mind of something I thought would be interesting, or useful to myself and others. I’d get excited enough about it to try to create it. The hard part was translating what I saw in my mind, which was already finished, into the computer’s language, to get it to reproduce what I wanted. When I was successful it was the biggest high for me. Seeing my vision play out in front of me on a computer screen was electrifying. It made my day. I characterized computers as “creation machines”. What I also liked about them is they weren’t messy. Creating with a computer wasn’t like writing or typing on paper, or painting, where if you made a mistake you had to live with it, work around it, or start over somewhere to get rid of the mistake. I could always fix my mistakes on a computer, leaving no trace behind. The difference was with paper it was always easy to find my mistakes. On the computer I had to figure out where the mistakes were!

The few adults I knew at the time who knew how to use a computer tended to not be so impressed with programming ability, not because they knew better, but because they were satisfied being users. They couldn’t imagine needing to program the computer to do anything. Anything they needed to do could be satisfied by a commercial package they could buy at a computer store. They regarded programming as an interesting hobby of kids like myself, but irrelevant.

As I became familiar with the wider world of what represented computing at the time (primarily companies and the computers they sold), I got a sense that this creation was historic. Sometimes in school I would get an open-ended research assignment. Each chance I got I’d do a paper on the history of the computer, each time trying to deepen my knowledge of it.

The earliest computer I’d found in my research materials was a mechanical adding machine that Blaise Pascal created in 1645, called the Pascaline. There used to be a modern equivalent of it as late as 25-30 years ago that you could buy cheap at the store. It was shaped like a ruler, and it contained a set of dials you could stick a pencil or pen point into. All dials started out displaying zeros. Each dial represented a power of ten (starting at 100). If you wanted to add 5 + 5, you would “dial” 5 in the ones place, and then “dial” 5 in the same place again. Each “dial” action added to the quantity in each place. The dials had some hidden pegs in them to handle carries. So when you did this, the ones place dial would return to “0”, and the tens place dial would automatically shift to “1”, producing the result “10”.

The research material I was able to find at the time only went up to the late 1960s. They gave me the impression that there was a dividing line. Up to about 1950, all they talked about were the research efforts to create mechanical, electric, and finally electronic computers. The exception being Herman Hollerith, who I think was the first to find a commercial application for an electric computer, to calculate the 1890 census, and who built the company that would ultimately come to be known as IBM. The last computers they talked about being created by research institutions were the Harvard Mark I, ENIAC, and EDSAC. By the 1950s (in the timeline) the research material veered off from scientific/research efforts, for the most part, and instead talked about commercial machines that were produced by Remington Rand (the Univac), and IBM. Probably the last thing they talked about were minicomputer models from the 1960s. The research I did matched well with the ethos of computing at the time: it’s all about the hardware.

High school

When I got into high school I joined a computer club there. Every year club members participated in the American Computer Science League (ACSL). We had study materials that focused on computer science topics. From time to time we had programming problems to solve, and written quizzes. We earned individual scores for these things, as well as a combined score for the team.

We would have a week to come up with our programming solutions on paper (computer use wasn’t allowed). On the testing day we would have an hour to type in our programs, test and debug them, at the end of which the computer teacher would come around and administer the official test for a score.

What was neat was we could use whatever programming language we wanted. A couple of the students had parents who worked at the University of Colorado, and had access to Unix systems. They wrote their programs in C on the university’s computers. Most of us wrote ours in Basic on the Apples we had at school.

Just as an aside, I was alarmed to read Imran’s article in 2007 about using FizzBuzz to interview programmers, because the problem he posed was so simple, yet he said “most computer science graduates can’t [solve it in a couple minutes]”. It reminded me of an ACSL programming problem we had to solve called “Buzz”. I wrote my solution in Basic, just using iteration. Here is the algorithm we had to implement:

input 5 numbers
if any input number contains the digit "9", print "Buzz"
if any input number is evenly divisible by 8, print "Buzz"
if the sum of the digits of any input number is divisible by 4,
   print "Buzz"

for every input number
A: sum its digits (we'll use "sum" as a variable in this
loop for a sum of digits)
   if sum >= 10
      get the digits for sum and go back to Step A
   if sum equals 7
      print "Buzz"
   if sum equals any digit in the original input number
      print "Buzz"
end loop

test input   output
198          Buzz Buzz
36
144          Buzz
88           Buzz Buzz Buzz
10           Buzz

In my junior and senior year, based on our regional scores, we qualified to go to the national finals. The first year we went we bombed, scoring in last place. Ironically we got kudos for this. A complimentary blurb in the local paper was written about us. We got a congratulatory letter from the superintendent. We got awards at a general awards assembly (others got awards for other accomplishments, too). A bit much. I think this was all because it was the first time our club had been invited to the nationals. The next year we went we scored in the middle of the pack, and heard not a peep from anybody!

(Update 1-18-2010: I’ve had some other recollections about this time period, and I’ve included them in the following seven paragraphs.)

By this point I was starting to feel like an “experienced programmer”. I felt very comfortable doing it, though the ACSL challenges were at times too much for me.

I talk about a couple of software programs I wrote below. You can see video of them in operation here.

I started to have the desire to write programs in a more sophisticated way. I began to see that there were routines that I would write over and over again for different projects, and I wished there was a way for me to write code in what would now be called “components” or DLLs, so that it could be generalized and reused. I also wanted to be able to write programs where the parts were isolated from each other, so that I could make major revisions without having to change parts of the program which should not be concerned with how the part I changed was implemented.

I even started thinking of things in terms of systems a little. A project I had been working on since Jr. high was a set of programs I used to write, edit, and play Mad Libs on a computer. I noticed that it had a major emphasis on text, and I wondered if there was a way to generalize some of the code I had written for it into a “text system”, so that people could not only play this specific game, but they could also do other things with text. I didn’t have the slightest idea how to do that, but the idea was there.

By my senior year of high school I had started work on my biggest project yet, an app. I had been wanting for a while, called  “Week-In-Advance”. It was a weekly scheduler, but I wanted it to be user friendly, with a windowing interface. I was inspired by an Apple Lisa demo I had seen a couple years earlier. I spent months working on it. The code base was getting so big, I realized I had to break it up into subroutines, rather than one big long program, to make it manageable. I wrote it in Basic, back when all it had for branching was Goto, Gosub, and Return commands. I used Gosub and Return to implement the subroutines.

I learned some advanced techniques in this project. One feature I spent a lot of time on was how to create expanding and closing windows on the screen. I tried a bunch of different animation techniques. Most of them were too slow to be useable. I finally figured out one day that a box on the screen was really just a set of four lines, two vertical, and two horizontal, and that I could make it expand efficiently by just taking the useable area of the screen, and dividing it horizontally and vertically by the number of times I would allow the window to expand, until it reached its full size. The horizontal lines were bounded by the vertical lines, and the vertical lines were bounded by the horizontals. It worked beautifully. I had generalized it enough so that I could close a window the same way, with some animated shrinking boxes. I just ran the “window expanding” routine in reverse by negating the parameters. This showed me the power of “systematizing” something, rather than using code written in a narrow-minded fashion to make one thing happen, without considering how else the code might be used.

The experience I had with using subroutines felt good. It kept my code under control. Soon after I wanted to learn Pascal, so I devoted time to doing that. It had procedures and functions as built-in constructs. It felt great to use them compared to my experience with Basic. The Basic I used had no scoping rules whatsoever. Pascal had them, and programming felt so much more manageable.

Getting a sense of the future

As I worked with computers more and talked to people about them in my teen years I got a wider sense that they were going to change our society, I thought in beneficial ways. I’ve tried to remember why I thought this. I remember my mom told me this in one of the conversations I had with her about them. Besides this, I think I was influenced by futurist literature, artwork, and science fiction. I had this vague idea that somehow in the future computers would help us understand our world better, and to become better thinkers. We would be smarter, better educated. We would be a better society for it. I had no idea how this would happen. I had a magical image of the whole thing that was deterministic and technology-centered.

It was a foregone conclusion that I would go to college. Both my mom and my maternal grandparents (the only ones I knew) wanted me to do it. My grandparents even offered to pay full expenses so long as I went to a liberal arts college.

In my senior year I was trying to decide what my major would be. I knew I wanted to get into a career that involved computer programming. I tried looking at my past experience, what kinds of projects I liked to work on. My interest seemed to be in application programming. I figured I was more business-oriented, not a hacker. The first major I researched was CIS (Computer Information Science/Systems). I looked at their curriculum and was uninspired. I felt uncertain about what to do. I had heard a little about the computer science curriculum at a few in-state universities, but it felt too theoretical for my taste. Finally, I consulted with my high school’s computer teacher, and we had a heart to heart talk. She (yes, the computer teacher was a woman) had known me all through my time there, because she ran the computer club. She advised me to go into computer science, because I would learn about how computers worked, and this would be valuable in my chosen career.

She had a computer science degree that she earned in the 1960s. She had an interesting life story. I remember she said she raised her family on a farm. At some point, I don’t know if it was before or after she had kids, she went to college, and was the only woman in the whole CS program. She told me stories about that time. She experienced blatant sexism. Male students would come up to her and say, “What are you doing here? Women don’t take computer science,” and, “You don’t belong here.” She told me about writing programs on punch cards (rubber bands were her friends 🙂 ), taking a program in to be run on the school’s mainframe, and waiting until 3am for it to run and to get her printout. I couldn’t imagine it.

I took her advice that I should take CS, kind of on faith that she was right.

Part 3.

Advertisements

One thought on “My journey, Part 2

  1. Pingback: Identifying what I’m doing | Tekkie

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s